Random Orthogonalization Design

Xizixiang Wei

[C] Xizixiang Wei, Cong Shen, Jing Yang and H. Vincent Poor, Random Orthogonalization for Federated Learning in Massive MIMO Systems, in Proc. IEEE International Conference on Communications (ICC), May 2022.

[J] Xizixiang Wei, Cong Shen, Jing Yang and H. Vincent Poor, Random Orthogonalization for Federated Learning in Massive MIMO Systems, IEEE Transactions on Wireless Communications, 2023.

Background: Federated Learning

FedAvg

Goal: central server obtain a **global model** trained by **local data** at total *N* clients.

Ref: McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial intelligence and statistics. PMLR, 2017.

FedAvg

FedAvg: a composition of **multiple learning rounds** Each learning round contains **4 steps**.

Ref: McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial intelligence and statistics. PMLR, 2017.

FedAvg

Communication is the **bottleneck** of federated learning.

Ref: McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial intelligence and statistics. PMLR, 2017.

Motivation

Main difference from traditional communications

Central server does not need to decode individual model in uplink comm.

Motivation

Main difference from traditional communications

Central server does not need to decode individual model in uplink comm.

Uplink of FL: scaling challenges

Over-the-Air Computation (AirComp) is a promising solution.

Transactions on Wireless Communications, 2019.

Uplink of FL: AirComp

Heuristic channel inversion

$$\hat{x}_{t+1} = y = \sum_{i=1}^{K} h_k \frac{x_t^k}{h_k} + n = \sum_{i=1}^{K} x_t^k + n$$

- Require channel state information at transmitters (CSIT)
- Increasing dynamics of signal
- Performance will "blow up" when deep fading

Ref: Guangxu Zhu, Yong Wang, and Kaibin Huang. "Broadband analog aggregation for low-latency federated edge learning." IEEE Transactions on Wireless Communications, 2019.

Uplink of FL: AirComp + MIMO

Solution: Using high-dimension $h_k \in \mathbb{C}^{M \times 1}$ provided by massive MIMO

Channel Hardening and Favorable Propagation

IID Rayleigh fading channel model $h_k \sim CN(0, \frac{1}{M}I)$ **Favorable propagation Channel hardening** $\mathbf{h}_k^H \mathbf{h}_k \to 1$, as $M \to \infty$. $\mathbf{h}_k^H \mathbf{h}_j \to 0$, as $M \to \infty$, $\forall k \neq j$. **Massive MIMO** $\xrightarrow{M \to \infty}$ Random Orthogonalization Linear projector: sum channel K $\mathbf{v} = \mathbf{h}_s = \sum \mathbf{h}_k$ k=1

Random Orthogonalization

Linear projection $h_S^H y$: an unbiased estimation

RO: UL Design

RO: UL Design

RO: UL Design

RO: DL Design

Performance

Communication performance

Uplink

Downlink

Performance

Learning performance

(e) CIFAR-10 uplink+downlink

(f) CIFAR-10 uplink+downlink

Backup

Random Orthogonalization: Uplink Design

• Step 1: Uplink channel summation

All clients transmit a common pilot signal *s* synchronously. The received signal at the BS is

$$\mathbf{y}_s = \sum_{k \in [K]} \mathbf{h}_k s + \mathbf{n}_s,$$

so that the BS can estimate the summation channel $\mathbf{h}_s \triangleq \sum_{k \in [K]} \mathbf{h}_k$

Step 2: Uplink model transmission

All clients transmit model differential parameters to the BS in *d* shared time slots.

$$\mathbf{y}_i = \sum_{k \in [K]} \mathbf{h}_k x_{k,i} + \mathbf{n}_i, \ \forall i = 1, \cdots, d.$$

Step 3: Receiver computation

The BS estimates aggregated parameter via a simple linear projection operation:

$$\tilde{x}_i = \mathbf{h}_s^H \mathbf{y}_i = \sum_{k \in [K]} \mathbf{h}_k^H \sum_{k \in [K]} \mathbf{h}_k x_{k,i} + \sum_{k \in [K]} \mathbf{h}_k^H \mathbf{n}_i$$

Random Orthogonalization: Uplink Design

Linear projection: an unbiased estimation

Enhanced Design

Convergence Analysis

Assumption 1. L-smooth: $\forall \mathbf{v} \text{ and } \mathbf{w}, \|f_k(\mathbf{v}) - f_k(\mathbf{w})\| \leq L \|\mathbf{v} - \mathbf{w}\|;$

Assumption 2. μ -strongly convex: $\forall \mathbf{v} \text{ and } \mathbf{w}, \langle f_k(\mathbf{v}) - f_k(\mathbf{w}), \mathbf{v} - \mathbf{w} \rangle \geq \mu \|\mathbf{v} - \mathbf{w}\|^2$;

Assumption 3. Bounded variance for unbiased mini-batch SGD: $\forall k \in [N]$,

$$\mathbb{E}[\nabla \tilde{f}_k(\mathbf{w})] = \nabla f_k(\mathbf{w}) \quad and \quad \mathbb{E} \left\| \nabla f_k(\mathbf{w}) - \nabla \tilde{f}_k(\mathbf{w}) \right\|^2 \le H_k^2;$$

Assumption 4. Uniformly bounded gradient: $\forall k \in [N], \mathbb{E} \left\| \nabla \tilde{f}_k(\mathbf{w}) \right\|^2 \leq H^2$ for all mini-batch data.

Theorem 1 (Convergence for random orthogonalization). With Assumptions 1-4, for some $\gamma \ge 0$, if we select the learning rate as $\eta_t = \frac{2}{\mu(t+\gamma)}$, we have $\mathbb{E}[f(\mathbf{w}_t)] - f^* \le \frac{L}{2(t+\gamma)} \left[\frac{4B}{\mu^2} + (1+\gamma) \|\mathbf{w}_0 - \mathbf{w}^*\|^2 \right],$ (14) for any $t \ge 1$, where $B \triangleq \left[1 + \frac{K}{M} + \frac{1}{\mathsf{SNR}} \right] \frac{H^2}{K}.$ (15)

Preserve $O\left(\frac{1}{T}\right)$ convergence rate of SGD