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Background: Federated Learning

Machine learning enables
powerful applications

1
Massive real-word data 
are generated at edge 
devices

2
We want to keep 
sensitive data at edge 
devices

3

Federated Learning (FL)

§ A distributed machine learning paradigm 
§ Obtain a global model while keeping data locally
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FedAvg

Ref: McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial intelligence and 
statistics. PMLR, 2017.

⋯ ⋯

Client 1         Client 2           Client 3                 Client K                                        Client N               

⋯

Central Server

Goal: central server obtain a global model trained by local data at total 𝑁 clients.
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FedAvg

§ Step 1: Client selection & downlink broadcast
§ Step 2: Local stochastic gradient descent (SGD)
§ Step 3: Local model uploading
§ Step 4: Central server aggregation
§ Repeat Step 1-4 for 𝑇 rounds until convergence 

Ref: McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial intelligence and 
statistics. PMLR, 2017.

⋯ ⋯

Client 1         Client 2           Client 3                 Client K                                        Client N               

⋯

Central Server

FedAvg: a composition of multiple learning rounds 
Each learning round contains 4 steps.
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FedAvg

§ Step 1: Client selection & downlink broadcast
§ Step 2: Local stochastic gradient descent (SGD)
§ Step 3: Local model uploading
§ Step 4: Central server aggregation
§ Repeat Step 1-4 for 𝑇 rounds until convergence 

Ref: McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial intelligence and 
statistics. PMLR, 2017.

⋯ ⋯

Client 1         Client 2           Client 3                 Client K                                        Client N               

⋯

Central Server

Communication is the bottleneck of federated learning.
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Motivation
Main difference from traditional communications 

§ Central server does not need to decode individual model in uplink comm.
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Only need the 
averaged signal
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Motivation

Co-design more efficient and reliable wireless 
communication schemes for federated learning   

Characteristics of 
federated learning

Properties of 
wireless channel

Main difference from traditional communications 
§ Central server does not need to decode individual model in uplink comm.
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Uplink of FL: scaling challenges 
Over-the-Air Computation (AirComp) is a promising solution.
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same time-frequency resource
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Ref: Guangxu Zhu, Yong Wang, and Kaibin Huang. "Broadband analog aggregation for low-latency federated edge learning." IEEE 
Transactions on Wireless Communications, 2019.

Biased 
estimation

Different signals 
superpose over the air 

§ In real wireless channel
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Uplink of FL: AirComp
Heuristic channel inversion
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§ Require channel state information at 
transmitters (CSIT)

§ Increasing dynamics of signal

§ Performance will “blow up” when 
deep fading

Ref: Guangxu Zhu, Yong Wang, and Kaibin Huang. "Broadband analog aggregation for low-latency federated edge learning." IEEE 
Transactions on Wireless Communications, 2019.
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Uplink of FL: AirComp + MIMO
Solution: Using high-dimension 𝒉/ ∈ ℂ4×#	provided by massive MIMO 
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Goal: Find a linear projector
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Channel Hardening and Favorable Propagation
IID Rayleigh fading channel model 𝒉/~𝐶𝑁(0,

#
4 𝑰)

Channel hardening Favorable propagation

Linear projector: sum channel

Massive MIMO   Random Orthogonalization𝑀 ⟶∞
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Random Orthogonalization
Linear projection 𝒉9:𝒚: an unbiased estimation
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𝒉9:𝒚 is an unbiased 
estimator of sum signal 



RO: UL Design

Estimate

§ Partial CSI at the receiver (CSIR)

§ Low communication overhead
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RO: UL Design

§ No CSIT required
𝒉" 𝑥#" +𝒉$ 𝑥#$ + 𝒉% 𝑥#%+⋯ + 𝒏#𝒚# =
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RO: UL Design

§ Low computational complexity
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RO: DL Design

Using 𝒉9 as the precoder: an efficient broadcast scheme
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Summary and Enhanced Design

Massive 
MIMO

Random Orthogonalization:
Channel hardening + Favorable 

propagation 

RO Design

§ No CSIT
§ Small overhead
§ Low computational 

complexity

Enable RO is 
unava
ilable

Enhanced design that preserves all advantages 
of RO only at a small extra cost
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Performance
§ Communication performance

 Uplink      Downlink  
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Performance
§ Learning performance        
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Backup







Enhanced Design

Channel echo:




