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ackground: Federated Learning

I Massive real-word data

| are generated at edge
I devices
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We want to keep
sensitive data at edge
devices
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| Machine learning enables
: powerful applications |
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I= Adistributed machine learning paradigm '
'a Obtain a global model while keeping data locally :
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—
FedAvg

Goal: central server obtain a global model trained by local data at total N clients.

Central Server

s @: C: @ @ ©=

Client 1 Client 2 Client 3 Client K Client N

Ref: McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial intelligence and
statistics. PMLR, 2017.
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—
FedAvg

FedAvg: a composition of multiple learning rounds
Each learning round contains 4 steps.

@ = Step 1: Client selection & downlink broadcast
e Step 2: Local stochastic gradient descent (SGD)
C

Step 3: Local model uploading
entral Server '« Step 4: Central server aggregation

Repeat Step 1-4 for T rounds until convergence

s @ Be

Client 1 Client 2 Client 3 Client K Client N

Ref: McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial intelligence and
statistics. PMLR, 2017.
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FedAvg

Communication is the bottleneck of federated learning.

) e

]
‘ Step 3: Local model uploadmg

Central Server  » Step 4: Central server aggregatlon
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Repeat Step 1-4 for T rounds until convergence

s @ Be

Client 1 Client 2 Client 3 Client K Client N

Ref: McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial intelligence and
statistics. PMLR, 2017.
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Motivation

Main difference from traditional communications
» Central server does not need to decode individual model in uplink comm.

Only need the
averaged signal
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—
Motivation

Main difference from traditional communications
» Central server does not need to decode individual model in uplink comm.

( Characteristics of

|
:federated learning : +

|( Properties of
| Wireless channel

/ : . . .
I Co-design more efficient and reliable wireless
: communication schemes for federated learning
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Uplink of FL: scaling challenges

Over-the-Air Computation (AirComp) is a promising solution.

= All clients can be scheduled at the

[
LW

R4 Biased N\

\ . . 1
\ 4
x} x? xK . \estlmatlon’ ,

————————

Ref: Guangxu Zhu, Yong Wang, and Kaibin Huang. "Broadband analog aggregation for low-latency federated edge learning." IEEE
Transactions on Wireless Communications, 2019.
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Heuristic channel inversion

e =

xtl/h1 xt,z/hz

xf/hK

plink of FL: AirComp

k

Xt _ V'K k
TN = Qi1 Xt tn

~  _ . _ VK
Xt+1—= Y = Zi:1 hkh_k

» Require channel state information at
transmitters (CSIT)

* |ncreasing dynamics of signal

= Performance will “blow up” when
deep fading

Ref: Guangxu Zhu, Yong Wang, and Kaibin Huang. "Broadband analog aggregation for low-latency federated edge learning." IEEE

Transactions on Wireless Communications, 2019.
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Uplink of FL: AirComp + MIMO

Solution: Using high-dimension h; € C"*! provided by massive MIMO




_ Channel Hardening and Favorable Propagation

lID Rayleigh fading channel model h,ngN(O,%I)

hi’h, —» 1, as M — oo. I hi’h; — 0, as M — oo, Vk # j.
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Random Orthogonalization

Linear projection hZy: an unbiased estimation

#i=hTy;= > hil Y ma;+ Y hiln

ke[K] ke(K]| ke[K]
& Z hy hyay; + Z Z hi'hjz;; + Z hfn,
belkl kelRlsElls#k , hy is an unbiased ‘.
Signal Interference Noise : estimator of sum Signal :

b
< Y mp Vi=1,--- ,d.
ke[K]|

thhj—>O, as M — oo,

hi’h;, — 1, as M — co.
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RO: UL Design

UL model transmission
A

Slot 2 Slot i Slotd | Receiver computation
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Q‘ . o Compute X;
Estimate h Receive y;
Client K g Client K

P mm——————————o - ~ = Partial CSI at the receiver (CSIR)
. K K I

: o Estimate _ l

| Ys = E :hks + Ns - hs = § :hk | = | ow communication overhead
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RO: UL Design

UL model transmission

5 e i
UL channel summation | Slot 1 Slot 2 Slot i Slotd | Receiver computation
/ N
/ | 1
/ : I , I R

Client 1 [] - PHOts 2 (\ Client1 | |- Xi ., P |
QoS4 Xai- v :

Client 2 XS] Client 2 Y. ! R

. N = : Lt . Compute X;
s timate h : g i !
Estimate h; Receive y; !
Client K ! Client K / !
I I
| |
| 1
1

= No CSIT required
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RO: UL Design

UL model transmission

A T !
i |
UL channel summation | Slot 1 Slot 2 Slot i Slot d; | Receiver computation :
\ i :

. , ®
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Client 2 ¥ S Client 2 = : R [
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RO: DL Design

|

N I

|

UL channel summati¢n | Slot 1 Slot 2 Slot i Slot d :

/ L] '

7 Clientd D __P_I_IQE_S_L_* ® . ® wi . D Client 1 i

ROt 1T é Wi . ]

Client 2 D = \O'SS’/:/ e D Client 2 !

9 |  Estimate h Broadcast w; W‘ i

Client K D : * D Client K :

Using h as the precoder: an efficient broadcast scheme

{ H k(a) y |7 H k(0 : \I
: yr = hy, hyw; + z;” = hy hpw; + Z hyhjw,+ 2, Rw; Va=1,---,d. ,
M i€[K],j#k v '
| Signat ~ JEIK].IF  Noise :
\ Inter?errence ,’

-_— e - - - - - - S S S S e b S DS S D DS D B D B B B e e, B D D D S S B D B B DS D B B B S e . .

hih; — 0, as M — oo,

hi'hy =1, as M — oo.
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Summary and Enhanced Design

RO Design :

O
o — — —_—_—_—_—_ s DT \
- - \

N IS - - ' L] I. NO CSIT -
f Massive ] Enable | Random Orthggonallzatlon. I 1= Small overhead I ol
I i— > . Channel hardening + Favorable | — ) I unava

MIMO I ropagation | I = Low computational | ilabl

—-—== \____E_p_g ______ _ I complexity ) Habie

Enhanced design that preserves all advantages
of RO only at a small extra cost
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Performance

= Communication performance

-OG Proposed M = 256
¥ MMSE M = 256
A ——CRLB M = 256
........ Proposed M =512
MMSE M = 512
CRLB M =512
~©-Proposed M = 1024
VvV MMSEM-=1024 |
—8-CRLB M = 1024
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erformance

» |earning performance
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Random Orthogonalization: Uplink Design

UL model transmission

UL channel summation I Slot 1 | Slot 2 I l Slot i | | l Slot d I Receiver computation
. ) i . ‘ ®
Client 1 pilots _, ¢ Client 1 X1 > @
ot x2i >

Client 2 xS 3 Client 2 A R

: NP - . e Compute X;

Estimate hg : Receive y;

Client K Client K

« Step 1: Uplink channel summation
All clients transmit a common pilot signal s synchronously. The received signal at the BS is

Ys = Z hk3+n37

ke(K]
so that the BS can estimate the summation channel hs £ > kelk) Dk

» Step 2: Uplink model transmission
All clients transmit model differential parameters to the BS in d shared time slots.

yi = Z hkxk’i—kni, Vi=1,---,d.
ke(K]

» Step 3: Receiver computation
The BS estimates aggregated parameter via a simple linear projection operation:

#;=hfy;= Y bl ¥ hyzp;+ Y hin

ke[K] ke[K] ke[K]



Random Orthogonalization: Uplink Design

UL model transmission

- [ Stoti [ -

UL channel summation | Slot 1 | Slot 2 I | | Slot d | Receiver computation
" Client1 [T pl\‘:;:i 5 é " Clieat 1 [ 2 é é
Client 2 | ?~\0\S Client 2 " oo
: , P Estimate hg : Receive y; SR
Client K | Client K
Linear projection: an unbiased estimation
H H
=D hi Z hyzki + ) hi'n; Advantages:

ke[K]

= Z b+ Y. Y hfhjei+ Z hin,

kE[K]JG[ 1.i#k

ke[K ke[K]

~

Slgnal Interference o N:)rlse
(b) .
~ Zxk,ia \gz:]-a"'ad (o)
ke[K] (o)

hih, -1, as M — .

Only require patrial CSIT
Extremely low complexity

No individual parameter decoded

hfhj—>0, as M — oo,




Enhanced Design

UL model transmission

/\

7 Estimate hg

Channel cchc; B e N
[ ] Clientk

Esimate g,

Broadcastw; - Wi

T [ ] clientk

Channel echo: gx = h}'h;

\\
UL channel summation Channel echo Slot 1 Slot i Slot d Server computation
Client 1 [:l __pilots : ® @ ks . D Client 1 g, /" Client 1 |:| 3 '/—Rg(g-")-v: @ P
Py hs [a¢&9"‘)’§fv
Client2 [ .- s - - [] Client 2 Client 2 [ ]2 \ 0¥
Ao : 122
. Q\ Estimate hs Channel echo ™~ 7% ’ """ Receive y; Compute X;
ClientK | |~ [] Cientk ClientK [ |~
Esimate gy
DL global model broadcast
A
%
UL channel summation Channel echo Slot 1 Slot i Slot d Server computation
\
ilot s i
Client 1 [JJJj -2 > N ks Il Client1 DM [I] Client1 '\
?‘)\/O’,S/ v \::::*\»\\‘hs . ::::\"‘*‘\‘ w;
Client2 [ ] - O 2 h: [] Chfm2 S [ Client2
) : k : - Compute W;




Convergence Analysis

Assumption 1. L-smooth: ¥ v and w, ||fr(v) — f(w)|| < L||v —w]||;

Preserve O (%)
convergence rate
of SGD

Assumption 2. p-strongly convex: ¥ v and w, (fr(v) — fr(w),v — w) > u|v — w|*

Assumption 3. Bounded variance for unbiased mini-batch SGD: Yk € [N],

E[V /()] = Vii(w) and E[|Vi(w) - ka(w)H2 < B

Assumption 4. Uniformly bounded gradient: Vk € [N], E HV fk(w)H2 < H? for all mini-batch data. ()O
o
Theorem 1 (Convergence for random orthogonalization).
With Assumptions 1-4, for some v > 0, if we select the
learning rate as ny = N(++’Y) we have
L 4B 2
E[f(wy)] — f* < +(1+ wo — w7,
)] = < gt | o + (L4 I = w]
14)
for any t > 1, where
K 1 ] H?
B2 |1+ =+ | = 1
l - M u SNR] K (15)




