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Background: Federated Learning

Machine learning enables
powerful applications

1
Massive real-word data 
are generated at edge 
devices

2
We want to keep 
sensitive data at edge 
devices

3

Federated Learning (FL)

§ A distributed machine learning paradigm 
§ Obtain a global model while keeping data locally
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Motivation
Main difference from traditional communications 

§ Different quality-of-service (QoS) requirements over time

Early stage

Machine learning 
model is rough

Final stage

Machine learning 
model is accurate
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System model

Noise source 1: 
Effective downlink noise
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Federated learning over both noisy uplink and downlink channels

Noise source 2:
Effective uplink noise

Noise source 3:
SGD noise

Noise from 
comm.

Noise from 
comm.

Noise from 
data
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System model

Noise source 1: 
Effective downlink noise
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Federated learning over both noisy uplink and downlink channels

Noise source 2:
Effective uplink noise

Noise source 3:
SGD noise § Co-design learning 

and communication
§ Communication 

scheme should fit 
noisy data source
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SGD noise
Gradient descent (GD)
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SGD noise
Gradient descent (GD)
Stochastic gradient descent (SGD) 
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Loss function: 𝐿&(𝒘)
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stochastic gradient = gradient + noise  

Gradient

noise

For convergence:
Decreasing learning rate → Decreasing effective SGD noise
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SGD noise
Gradient descent (GD)
Stochastic gradient descent (SGD) 
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Loss function: 𝐿&(𝒘)

∇𝐿,(𝒘-
')

&∇𝐿,(𝒘-
', 𝜁-)

stochastic gradient = gradient + noise  

Gradient

noise

For convergence:
Decreasing SGD noise + Decreasing effective comm. noise

Comm. 
noise
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Convergence over noisy channel

FL tasks with non-IID datasets and partial/full 
clients participation converge at rate 𝒪 .

- .

Channel noise should not dominate the SGD noise.

For 𝐿-smooth, 𝜇-strongly convex and bounded-gradient loss function 

§ Effective SNR control policy
 

𝜁$%~𝒪
1
𝑡%

Effective DL noise power Effective UL noise power

𝜎$%~𝒪
1
𝑡%
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Model differential for UL

Model differential
𝒙-' = 𝒘-
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Model differential for UL

Model differential
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over time
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Model differential for UL

Model differential
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Model differential for UL

Model differential
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Model differential for Uplink

Model differential
𝒙-' = 𝒘-
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Convergence over noisy channel

FL tasks with non-IID datasets and partial 
clients participation converge at rate 𝒪 .

- .

We cannot adopt model differential for downlink due to partial participation.

For 𝐿-smooth, 𝜇-strongly convex and bounded-gradient loss function 

§ Effective SNR control policy for uplink model differential 
 

𝜁$%~𝒪 1

Effective DL noise power Effective UL noise power

𝜎$%~𝒪
1
𝑡%
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Experiment
§ Noise free (ideal)
Under same budget

§ Equal power allocation
§ 𝒪 𝑡! -increased power allocation

CIFAR-10 IID     CIFAR-10 non-IID
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